Skip to article frontmatterSkip to article content

Polynomial interpolation

The United States carries out a census of its population every 10 years. Suppose we want to know the population at times in between the census years, or to estimate future populations. One technique is to find a polynomial that passes through all the data points.[1]

As posed in Definition 2.1.1, the polynomial interpolation problem has a unique solution. Once the interpolating polynomial is found, it can be evaluated anywhere to estimate or predict values.

2.1.1Interpolation as a linear system

Given data (ti,yi)(t_i,y_i) for i=1,,ni=1,\ldots,n, we seek a polynomial

p(t)=c1+c2t+c3t2++cntn1,p(t) = c_1 + c_{2} t + c_3t^2 + \cdots + c_{n} t^{n-1},

such that yi=p(ti)y_i=p(t_i) for all ii. These conditions are used to determine the coefficients c1,cnc_1\ldots,c_n:

c1+c2t1++cn1t1n2+cnt1n1=y1,c1+c2t2++cn1t2n2+cnt2n1=y2,c1+c2t3++cn1t3n2+cnt3n1=y3,c1+c2tn++cn1tnn2+cntnn1=yn.\begin{split} c_1 + c_2 t_1 + \cdots + c_{n-1}t_1^{n-2} + c_nt_1^{n-1} &= y_1, \\ c_1 + c_2 t_2 + \cdots + c_{n-1}t_2^{n-2} + c_nt_2^{n-1} &= y_2, \\ c_1 + c_2 t_3 + \cdots + c_{n-1}t_3^{n-2} + c_nt_3^{n-1} &= y_3, \\ \vdots \qquad & \\ c_1 + c_2 t_n + \cdots + c_{n-1}t_n^{n-2} + c_nt_n^{n-1} &= y_n. \end{split}

These equations form a linear system for the coefficients cic_i:

[1t1t1n2t1n11t2t2n2t2n11t3t3n2t3n11tntnn2tnn1][c1c2c3cn]=[y1y2y3yn], \begin{bmatrix} 1 & t_1 & \cdots & t_1^{n-2} & t_1^{n-1} \\ 1 & t_2 & \cdots & t_2^{n-2} & t_2^{n-1} \\ 1 & t_3 & \cdots & t_3^{n-2} & t_3^{n-1} \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & t_n & \cdots & t_n^{n-2} & t_n^{n-1} \\ \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix},

or more simply, Vc=y\mathbf{V} \mathbf{c} = \mathbf{y}. The matrix V\mathbf{V} is of a special type.

Polynomial interpolation can therefore be posed as a linear system of equations with a Vandermonde matrix.

2.1.2Exercises

Footnotes
  1. We’re quite certain that the U.S. Census Bureau uses more sophisticated modeling techniques than the one we present here!